
DATABASE
APPLICATIONS
ARCHETECTURE
David Dykstra, Igor Mandrichenko
STA meeting, June 25, 2014

Goals
• Support computing needs of experiments
• Develop short to medium term strategy – 3-5 years
•  Trends

•  Database are becoming more popular
•  Data intensity
•  Grid computing

•  Massively parallel access
•  Remote access

•  Internet technologies
• Robust, reliable, scalable, manageable architecture for

data access

Web services, not direct access
•  Fundamental idea:

•  Do not allow direct access to the storage (database), put a web
service between the client and the storage

•  Reuse technologies
developed for the Internet

•  Protocols, interfaces,
libraries, tools, frameworks,
knowledge

•  Decouple the client and
the storage
implementation

•  Hide the details, complexity
and intensity of the storage
communication behind the
server

•  Independent implementation
of the client and the server

•  Add resource
management layer

Current Architecture

Major features
• Use of common Internet standards (W3C, IETF)

•  HTTP, HTTPS, CSV, JSON, XML

• Common web applications development frameworks,
tools
•  WSGI, Apache httpd, squid, etc.

• Redundant web services infrastructure
•  Performance, availability, flexibility, resource management

• Modular design – optional components can be plugged in
or removed

Frontier
• Started around 2004 for D0 as a database web

application framework
•  Same idea: channel database communication through HTTP

•  No SQL communication, DB schema is hidden
•  Emphasis on URL caching
•  Currently is used as CDF Frontier

• Redesigned for CMS
•  Send SQL over HTTP, expose schema to the client

• Continued development
•  Option to hide schema from the client
•  Focus on site caching, client side multiplexing, robustness on large

scale

Major features
•  Client side multiplexing

•  Client chooses from multiple locations (caches) to request data from
•  Round-robin
•  Primary/backup
•  Multiple server sites
•  WLCG site cache discovery standard and implementation – work in progress

•  Additional layer of protocol on top of HTTP standard
•  Frontier client can talk only to Frontier server

•  Failover monitoring

•  SQL over HTTP

•  All of these features can be added to current architecture
without Frontier

Proposal
•  If direct SQL access is required, use Frontier
• Add Frontier on top of the architecture when:

•  Existing architecture reaches its scalability limits
•  URL caching is possible and beneficial
•  Caching infrastructure requires client side multiplexing

How to add Frontier

End
• Remaining slides could be useful for the discussion but

are not part of the presentation.

Redundant Web Services Infrastructure
• Multiple redundant application and data servers, running

on real and virtual machines
•  Performance
•  Availability

• Access multiplexing
•  HTTP redirector for interactive applications
•  HTTP proxy for data applications

• Used to run about dozen different applications, data and
interactive

On caching
Request is the fundamental resource. Minimize the number of requests
coming through the system and hitting the database.

•  Caching: re-use the data, retrieved or computed previously
•  Can significantly improve system performance
•  Or can decrease the performance and increase the load on the resources if the

data is not cacheable

•  When caching is good:
•  Data must be a deterministic function of the request and the request time
•  Dependency on the request time must be slow

•  Cache preemption
•  Data do not change between subsequent requests
•  It is easier to save data than to re-retrieve or re-compute

•  Examples:
•  State of the detector for run N – cacheable
•  Current state of the detector – not cacheable

How to cache
•  Client side

•  Do not ask for same data twice
•  Ask more than you immediately need and use it later
•  Application dependent

•  URL caching
•  If URL is good key for data, use Internet technologies (caching proxy)

to cache data
•  Application independent

•  Server side caching
•  Cache intermediate data and produce output from it

•  Data = F(R) – not cacheable
•  F = F(G(R)) but G(R) is cacheable
•  Application dependent

